Email Spam Detection: a Symbiotic Feature Selection Approach Fostered by Evolutionary Computation

نویسندگان

  • Pedro Sousa
  • Paulo Cortez
  • Rui Vaz
  • Miguel Rocha
  • Miguel Rio
چکیده

The electronic mail (email) is nowadays an essential communication service being widely used by most Internet users. One of the main problems affecting this service is the proliferation of unsolicited messages (usually denoted by spam) which, despite the efforts made by the research community, still remains as an inherent problem affecting this Internet service. In this perspective, this work proposes and explores the concept of a novel symbiotic feature selection approach allowing the exchange of relevant features among distinct collaborating users, in order to improve the behavior of anti-spam filters. For such purpose, several Evolutionary Algorithms (EA) are explored as optimization engines able to enhance feature selection strategies within the anti-spam area. The proposed mechanisms are tested using a realistic incremental retraining evaluation procedure and resorting to a novel corpus based on the well known Enron datasets mixed with recent spam data. The obtained results show that the proposed symbiotic approach is competitive also having the advantage of preserving end-users privacy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Hybrid Approach for Email Spam Detection based on Scatter Search Algorithm and K-Nearest Neighbors

Because cyberspace and Internet predominate in the life of users, in addition to business opportunities and time reductions, threats like information theft, penetration into systems, etc. are included in the field of hardware and software. Security is the top priority to prevent a cyber-attack that users should initially be detecting the type of attacks because virtual environments are not moni...

متن کامل

Evolutionary Symbiotic Feature Selection for Email Spam Detection

This work presents a symbiotic filtering approach enabling the exchange of relevant word features among different users in order to improve local anti-spam filters. The local spam filtering is based on a ContentBased Filtering strategy, where word frequencies are fed into a Naive Bayes learner. Several Evolutionary Algorithms are explored for feature selection, including the proposed symbiotic ...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

A New Hybrid Approach of K-Nearest Neighbors Algorithm with Particle Swarm Optimization for E-Mail Spam Detection

Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters therefore new filters to de...

متن کامل

Towards Symbiotic Spam E-mail Filtering

This position paper discusses the use of symbiotic filtering, a novel distributed data mining approach that combines contentbased and collaborative filtering for spam detection.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International Journal of Information Technology and Decision Making

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013